Jumat, 09 November 2018

Sintesis Senyawa Obat yang Memiliki Pusat Kiral

1. Senyawa Kiral

Senyawa kiral adalah ketika empat ligan yang berbeda terikat kepada karbon tetravalent, menghasilkan molekul asimetris yang mana atom karbon sebagai pusat asimetrisnya. Senyawa kiral mempunyai jumlah yang cukup besar dari ribuan bahan kimia yang telah digunakan. Sebagian masyarakat mungkin kurang memperhatikan sifat optis suatu senyawa organik, padahal reaksi kimia dalam sistem biologis makhluk hidup sangat stereospesifik. Artinya suatu stereoisomer akan menjalani reaksi yang berbeda dengan stereoisomer pasangannya dalam sistem biologis makhluk hidup. Bahkan terkadang suatu stereoisomer akan menghasilkan produk yang berbeda dengan stereoisomer pasangannya dalam sistem biologis makhluk hidup .

Gambar berikut menunjukkan dua isomer optik yang membuktikan adanya ligan yang berbeda disekitar pusat kiral :


Enantiomer adalah dua stereoisomer yang mana memperlihatkan tidak dapat dihimpitkan terhadap bayangan cerminnya. Diastereomers pada umumnya memiliki paling tidak dua pusat asimetris (satu diantaranya mempunyai konfigurasi yang sama) dan bukan merupakan bayangan cerminnya. Sebagian besar umumnya pusat kiral adalah diwakili oleh karbon tetrahedral, meskipun atom lain, seperti nitrogen, sulfur, dan phosphate, bisa ditemukan dalam stereoisomer. Senyawa yang memiliki sedikitnya dua enantiomer adalah senyawa kiral.
  
Sifat utama dari stereoisomer adalah diwakili oleh perputaran cahaya terpolarisasi kearah yang berbeda, berlawanan arah jarum jam (levo) dan searah jarum jam (dektro) atau L(-)- isomer dan D(-)- isomer. Menurut ketentuan Fischer, secara luas senyawa gula dan asam amino menggunakan symbol D dan L, dan hal ini berdasarkan pada perbandingan dengan senyawa +(-)-gliseraldehide dan saat ini digunakan juga ketentuan Cahn-Ingold-Prelog menggunakan R da S.
Prelog menggunakan R da S.

Rotasi optik untuk dua enantiomer dalam campuran rasemik adalah  sama (tidak memutar arah cahaya polarisasi). Sementara untuk diastereomer  tidak sama dengan enantiomer, diastereomers mungkin memiliki  perbedaan titik didih, titik beku dan atau kelarutan.


Pemisahan enantiomer dari rasemat, dengan kata lain pemisahan rasemat, adalah masalah biasa dalam penelitian stereokimia seperti halnya pada preparasi senyawa aktif biologi dalam obat. Masalahnya adalah berbeda dengan diastereomer dan tipe jenis isomer lainnya, enantiomer menunjukkan sifat fisika kimia yang sama. 

jika menggunakan konfigurasi fisher maka sistem penggambaran konfigurasi gugus yang berada disekitar pusat kiral akan berbeda  dimana susunan ruang atom atau gugus yang menempel pada karbon kiral yaitu konvensi D dn L. Dalam biokimia dan kimia organik yang dimana metode ini banyak digunakan dalam kedua bidang tersebut. Dalam kimia organik dan biokimia terutama karbohidrat dan asam amino. Dimana gliseraldehida dengan rantai karbon ditetapkan sebagai senyawa standar untuk menentukan konfigurasi semua karbohidrat. Proyeksi fischer terhadap griseraldehida dengan rantai karbon yang digambarkan secara vertikal dengan karbon yang paling teroksidasi harus berada pada bagian yang paling atas. Gugus OH yang berada disebelah pusat kiral digambarkan pada sisi sebelah kanan untuk isomer D dan disebelah kiri untuk isomer L. dalam hal ini maka berarti setiap gula yang memiliki streokimia yang sama dengan D-gliseraldehida termasuk gula seri D (misalnya D-glukosa) sedangkan gula yang memiliki stereokimia yang sama dengan L-giliseraldehida berarti seri L. 
 
Sistem ini analog untuk asam amino, jika proyeksi fisher digambarkan rantai karbon vertikal dengan atom karbon yang paling teroksidasi berada palinga atas. Maka asam amino yang ditemukan dalam protein manusia diketahui memiliki gugus NH pada posisi sebelah kiri fisher yang dimana juga sama dengan posisi L-gliseraldehida. Sehingga asam-asam amino ini dikenal dengan asam amino seri L . hal ini sangat menguntungkan dan bermanfaat dalam bidang kesehatan khususnya dalam bidang farmasi dimana dalam merancang obat dengan uji toksisitas selektif, dan yang diketahui asam amino pada mikroorganisme diketahui memiliki konfiguasi yang berlawanan yaitu seri-D. seperti contoh dimana pensilin yang menghambat enzim transpeptidase dalam sintesis dinding sel mikroba. Hal ini berhubungan dengan dipeptida D-alanin-D-alanin dari dinding sel mikroba yang mirip dengan struktur penisilin, sehingga penisilin tidak toksis terhadap manusia yang memiliki L-alanin dalam protein tubuh
2. Analisis Senyawa Kiral 

Pemisahan enantiomer adalah penelitian yang banyak dilakukan dalam analisis kimia, terutama dalam bidang biologi dan farmasi, karena obat kiral diberikan sebagai sebagai salah satu enantiomer  atau sebagai campuran rasemat. Sering kali dua enantiomer dari obat rasemat yang sama memiliki efek farmakologi yang berbeda. Sebagai contoh S(+)-Propanolol sangat lebih aktif dari pada enantiomernya. Anastetik ketamin diberikan sebagai campuran rasemat, dan S(+)-ketamin lebih potensi dari pada R(-)-ketamin, disamping itu bentuk R(-)- menyebabkan efek setelah operasi. Karena efek samping yang mungkin disebabkan oleh hadirnya component campuran dalam rasemat obat, sehingga saat ini kecendrungan industry farmasi dalam mempersiapkan obat dalam satu enantiomer saja. Bagaimanapun hasilnya dari beberapa obat melalui reaksi stereoselektif atau proses penyiapan pemisahan enantiomer bisa memberikan bahan yang tidak murni. Jadi diperlukan metode analisis yang sensitif karena daya pemisahan yang tinggi, diperlukan untuk mengontrol proses sintesis senyawa kiral untuk sediaan farmasi.

Satu pendekatan dalam pemisahan enantiomer, kadang-kadang ditunjukkan sebagai pemisahan enantiomer secara tidak langsung, melibatkan penggabungan enantiomer dengan reagen kiral tambahan untuk mengubah molekul tersebut menjadi diastereomer. Senyawa diastrereomer tersebut bisa kemudian dipisahkan dengan beberapa tehnik pemisahan akiral.

Pada saat ini, metode pemisahan secara langsung  biasanya dangan cara yang mana enantiomer ditempatkan dalam lingkungan kiral. Sebagai suatu prinsip penggunaan kiral selektor atau kiral irradiasi (misalnya : sinar cahaya terpolarisasi yang mana terdiri dari dua komponen kiral sirkular yang terpolarisasi) bisa membedakan dengan jelas antara dua enantiomer. Kiral selektor bisa merupakan suatu molekul atau permukaan kiral yang cocok. Dalam kaitannya dengan enantioselektif dari interaksi kedua enantimer, kiral selektor mengubah salah satu dari kedua enantiomer dengan kecepatan berbeda menjadi suatu senyawa kimia baru (kinetik enantioselektif) atau membentuk molekul labil pada stabilitas yang berbeda dengan enantiomer tersebut (termodinamika enantioselektif), atau perubahan bentuk L atau D dengan sistem selektif enzimatis (Davankov V.A.), Cara lain yang sering ditempuh para ahli kimia adalah rute biokimia dengan memakai enzim atau mikroorganisme untuk memproduksi enantiomer murni. Sebagai contoh (R)-Nikotina dapat diperoleh dengan cara menginkubasi campuran rasemik (R)-Nikotina dan (S)-Nikotina dalam wadah berisi bakteri Pseudomonas putida. Bakteri tersebut hanya akan mengoksidasi (S)-Nikotina, sedangkan (R)-Nikotina akan tersisa dalam wadah tersebut.
Metode analisis yang mana telah digunakan untuk proses pemisahan komponen senyawa kiral termasuk High Performance Liquid Chromatografi (HPLC), Gas Chromatografi (GC), Thin Layer Chromatografi (TLC) dan saat ini Capilary Electroforesis (CE) yang terutama digunakan untuk analisis dari golongan komponen yang berbeda, termasuk ion organik dan anorganik, peptide, protein, sakarida, obat, isomer optic dan lainnya. Dalam analisis CE proses pemisahan akan tercapai jika analit, di bawah pengaruh pemberian medan listrik, bergerak kearah detektor dengan kecepatan yang berbeda.
Selain metode CE merupakan analisis dengan daya pemisahan dan efisiensi yang tinggi dan dapat dibandingkan dengan metode lainnya, juga memiliki kelebihan lainnya yaitu : (Fanali S)
1. Volume sampel dan buffer yang diperlukan relatif dalam jumlah kecil
2. Kolom kiral yang mahal dapat dihindari karena kiral selektor dapat ditambahkan dengan mudah ke BGE (Background Elektrolyte)
3. Pemisahannya sangat reproduksibel karena buffer dengan kiral selektor dapat diisi ulang saat proses.
  Permasalahan :
1. bagaimana caranya memperoleh suatu enantiomer dengan enantiomeric excess (EE) yang tinggi?


2. Pada tahapan mensintesis senyawa obat, harus dirancang jalur sintesisnya. Secara garis besar jalur sintesis dibedakan menjadi dua yaitu sintesis parsial dan sintesis total. jelaskan kedua jalur sintesis parsial dan sintesis total tersebut !dan persyaratan umum apa saja yang harus di penuhi?


Sabtu, 03 November 2018

Sterokimia Considering In Planning Synthesis

Sterokimia Considering In Planning Synthesis
Stereokimia adalah susunan ruang dari atom dan gugus fungsi dalam molekul umumnya, molekul organik dalam obyek tiga dimensi yang merupakan hasil hibridisasi dan ikatan secara geometri dari atom dalam molekul. Artinya bagaimana atom-atom dalam sebuah molekul diatur dalam ruang satu terhadap ruang yang lainnya. Stereokimia berkaitan dengan bagaimana penataan atom-atom dalam sebuah molekul dalam ruang tiga dimensi.
Analisis retrosintesis atau ‘sintesis terbalik’ adalah proses pemutusan ikatan pada molekul senyawa menjadi bahan awal atau prekursor (starting material) yang sederhana dan tersedia secara komersial. Analisis retrosintesis merupakan suatu bentuk perencanaan sintesis, yang dapat dilakukan dengan diskoneksi (pemutusan ikatan) dan functional group interconvertion (FGI).
FGI adalah proses konversi suatu gugus fungsi menjadi gugus fungsi yang lain, dapat dilakukan dengan reaksi substitusi, adisi, eliminasi, oksidasi, reduksi, dan reaksi lainnya. Analisis retrosintesis memberikan informasi mengenai starting material apa saja yang bisa digunakan untuk mensintesis senyawa target.
Kekuatan analisis retrosintesis menjadi bukti dalam rancangan sintesis. Sasaran analisis retrosintesis adalah penyederhanaan struktur kimia. Seringkali, suatu sintesis akan memiliki lebih dari satu jalur sintesis yang mungkin. Retrosintesis cocok untuk mengungkap berbagai kemungkinan jalur sintesis yang berbeda dan membandingkannya berdasarkan logika dan panjang jalur. Perlu suatu basis data untuk setiap tahapan analisis, untuk menentukan komponen mana yang telah tersedia dalam literatur. Jika hal ini terjadi, tidak perlu eksplorasi lanjutan terhadap senyawa tersebut.
Analisis retrosintetik (retrosintesis) adalah teknik untuk merencanakan sintesis, terutama molekul organik yang kompleks, dimana molekul target kompleks (TM) direduksi menjadi urutan struktur yang semakin sederhana di sepanjang jalur yang pada akhirnya mengarah pada identifikasi yang sederhana atau bahan awal yang tersedia secara komersial (SM) dari mana sintesis kimia kemudian dapat dikembangkan.
Analisis retrosintetik didasarkan pada reaksi yang diketahui (misalnya Reaksi Wittig, oksidasi, reduksi dll.
Rencana sintetis dihasilkan dari analisis retrosintetik akan menjadi peta jalan untuk memandu sintesis target molekul.
 
Sintesis dapat dikelompokkan menjadi dua kategori besar:
(i) sintesis Linear
(ii) Sintesis konvergen
Sintesis Linier
Dalam sintesis linier, molekul target disintesis melalui suatu serangkaian transformasi linear.
 
Karena hasil keseluruhan sintesis didasarkan pada tunggal rute terpanjang ke molekul target, dengan menjadi panjang, linear sintesis menghasilkanhasil keseluruhan yang lebih rendah. Sintesis linear penuh dengan kegagalan karena kekurangannya fleksibilitas menyebabkan potensi kerugian besar dalam materi sudah diinvestasikan dalam sintesis pada saat kegagalan.
Sintesis Konvergen
Dalam sintesis konvergen, fragmen kunci dari molekul target disintesis secara terpisah atau independen dan kemudian dibawa bersama pada tahap selanjutnya dalam sintesis untuk membuat target molekul.
 
Sintesis konvergen lebih pendek dan lebih efisien daripada sintesis linear yang mengarah ke hasil keseluruhan yang lebih tinggi. Ini fleksibel dan lebih mudah untuk dieksekusi karena independen sintesis fragmen dari molekul target.


Diskoneksi

Pemutusan diwakili oleh garis bergelombang () melalui ikatan terputus,
Panah retrosintetik (): Panah terbuka ini mewakili pergi dari molekul target "mundur" menjadi lebih sederhana
molekul (retrons).
Panah sintetis (): Panah tertutup ini mewakili masuk arah maju.
 
Fungsional kelompok interkonversi (FGI) menggambarkan suatu proses mengonversi satu grup fungsional ke grup lain: mis. alkohol untuk aldehida, alkuna ke alkena dll.
Meskipun FGI tidak menawarkan banyak keuntungan untuk sintesis, ia menetapkan tahap untuk pemutusan berikutnya dari menengah. 
Dalam suatu sintesis stereoselektif, masing - masing pusat berurutan diperkenalkan dalam hubungannya dengan stereocenter yang ada. Kondisi ini biasanya sangat sulit dicapai. Ketika suatu reaksi tidak seutuhnya bersifat stereoselektif, produk akan mengandung satu atau lebih diastereomer pada produk yang diingikan. Hal ini membutuhkan baik itu pemurnian atau manipulasi untuk memperoleh stereokimia yang benar. Beruntungnya, diastereomer biasanya mudah untuk dipisahkan, tetapi efisiensi suatu sintesis akan berkurang denngan adanya separasi tsb. Jadi, kestereoselektifitasan yang tinggi merupakan suatu tujuan penting dalam perencanaan sintesis.
Jika suatu senyawa ingin diperoleh dalam bentuk murni secara enansiomer, maka suatu sintesis enansioselektif harus dikembangkan.
Dalam reaksi stereokimia, jika terdapat diastereomer maka sebaiknya dipisahkan terlebih dahulu sebelum dilakukan tahapan reaksi berikutnya agar produk reaksi menjadi 96% enantiomer saja atau maksudnya untuk mengurangi keberadaan enantiomer baru dari diastereomer produk asli. Hal ini menunjukkan betapa pentingnya memisahkan diastereomer itu sehingga diastereomer bisa menjadi 0% dan enantiomer produk asli menjadi optimum.
Retrosynthetic Strategies
Strategi retrosintetik dibutuhkan karena pemilihan bahan dasar (starting material) untuk reaksi sintesis didasarkan pada reaksi retrosintetik tersebut sekaligus sebagai strategi atau pemandu dalam melakukan reaksi sintesis.
Analisis retrosintetik hanya akan menghasilkan hasil yang bermanfaat jika diarahkan ke beberapa tujuan. Tujuan dasarnya adalah untuk menghasilkan prekursor yang sesuai dengan bahan awal yang tersedia. Kemudian, diarahkan menjadi generasi prekursor yang lebih mudah disintesis daripada target awal; prekursor tersebut cenderung lebih dekat dengan senyawa yang tersedia daripada target awal. Analisis retrosintetik diarahkan untuk penyederhanaan molekuler. Corey telah merumuskan lima jenis strategi utama yang mengarah pada penyederhanaan yang diinginkan yaitu :
1. Functional-group based strategies (strategi berdasarkan gugus fungsi)
2. Topological strategies (strategi berdasarkan topologi)
3. Transform-based strategies (strategi berdasarkan transformasi)
4. Structure-goal strategies (strategi berdasarkan struktur tujuan)
5. Stereochemical strategies (strategi berdasarkan stereokimia)
Stereochemical strategies berfokus pada penghapusan stereocenters (pusat stereokimia) dibawah stereocontrol (kontrol stereokimia). Stereocontrol dapat dicapai melalui kontrol mekanistik atau kontrol substrat. Rekoneksi dilakukan untuk memindahkan stereocenter dari rantai alifatik (sulit untuk diperkenalkan) ke dalam cincin (jauh lebih mudah dikenali).
7.2 Approaches to Planning Practical Organic Syntheses
Permasalahan dalam sintesis pada dasarnya adalah masalah dalam desain dan perencanaan. Mengingat sintesis hanya menghasilkan 1 senyawa organik tertentu, dimana senyawa target telah didefinisikan secara tepat, baik sebagai struktur maupun stereokimia. Maka selalu ada berbagai cara agar tujuan tersebut dapat dicapai yaitu melalui penggunaan bahan awal yang sama atau yang berbeda.
A. Methodology (Metode)
Metodologi umum dalam perencanaan sintesis melibatkan dua langkah, yaitu (1) Mempertimbangkan berbagai cara yang memungkinkan kerangka karbon yang diinginkan dapat dibangun, baik dari molekul yang lebih kecil atau oleh perubahan pada beberapa kerangka yang ada. (2) Mempertimbangkan pembentukan gugus fungsi yang diinginkan pada rangka karbon yang diinginkan juga. Dalam banyak kasus, gugus fungsi yang diinginkan dapat dihasilkan sebagai konsekuensi dari reaksi dimana kerangka yang diinginkan itu sendiri dihasilkan.
Pilihan rute terbaik biasanya dibuat dengan mempertimbangkan :
1. Ketersediaan bahan awal
2. Kesederhanaan berbagai langkah dan skala sintesis
3. Jumlah langkah pemisahan yang terlibat
4. Hasil dari setiap langkah
5. Kemudahan pemisahan dan pemurnian produk yang diinginkan dari produk samping dan stereoisomernya.
B. Starting Materials (Bahan dasar)
Bahan awal organik termurah yang tersedia adalah metana, etena, etin, propena, butena, benzena, dan metilbenzena (toluena). Banyak bahan kimia yang dapat disiapkan dengan mudah dan hasil yang tinggi dari salah satu hidrokarbon tersebut. Alasan lainnya karena relatif tidak mahal dan banyak tersedia.
Some Principles in Control of Stereochemistry
Stereokontrol untuk cincin sikloheksana dalam kimia organik sebagian besar difokuskan pada posisi preferensial aksial/ekuatorial substituen pada cincin. Stereokontrol makrosiklik difokuskan pada pemodelan substitusi dan reaksi dari cincin dalam kimia organik, dimana unsur-unsur stereogenik jarak jauh memberikan pengaruh konformasi yang cukup untuk mengarahkan hasil reaksi.
Dalam reaksi stereokimia, jika terdapat diastereomer maka sebaiknya dipisahkan terlebih dahulu sebelum dilakukan tahapan reaksi berikutnya agar produk reaksi menjadi 96% enantiomer saja atau maksudnya untuk mengurangi keberadaan enantiomer baru dari diastereomer produk asli. Hal ini menunjukkan betapa pentingnya memisahkan diastereomer itu sehingga diastereomer bisa menjadi 0% dan enantiomer produk asli menjadi optimum.
Problem of substituents and stereoisomers
Situasi menjadi kompleks ketika kemungkinan isomer yang tidak diinginkan akan dihasilkan juga pada langkah-langkah sintesis yang berbeda. Reaksi yang menghasilkan isomer tunggal (reaksi diastereospesifik) dalam hasil yang baik lebih disukai. Beberapa reaksi seperti Diels-Alder menghasilkan beberapa stereopoint (titik dimana stereoisomer dihasilkan) secara bersamaan dalam satu langkah dengan cara yang sangat dapat diprediksi. Namun, senyawa murni pada step terakhir reaksi biasanya masih memiliki 50% enansiomer yang tidak diinginkan, sehingga dapat menyebabkan penurunan drastis dalam efisiensi rute. Sehingga diinginkan untuk memisahkan isomer optik sedini mungkin sepanjang rute sintetis. Caranya dengan Chiron Approach, dimana bahan awal yang tepat dipilih dari 'kolam kiral' yang tersedia dengan mudah
Permasalahan:
1.      Mengapa dalam reaksi sterokimia diastereomer harus dipisahkan terlebih dahulu?
2.      Bagaimana cara untuk meningkatkan hasil dari reaksi stereokimia agar didapat hasil optimum?
3.      Dalam melakukan reaksi sintesis yang melibatkan stereokimia, maka perlu dilakukan kontrol (stereokontrol) agar didapatkan hasil sesuai keinginan. Bagaimana caranya?